
archi DOCT The e-journal for the dissemination of doctoral research in architecture.

Supported by the ENHSA Network | Fueled by the ENHSA Observatory

July**2016** www.enhsa.net/archidoct ISSN 2309-0103

Vladimir Andjelkovic // University of Belgrade

Abstract

The process of constant changes in social, spatio-physical, technical, technological, and economic frames reflects on the functionally physical structure of contemporary residential buildings. It actually initiates a faster development of new approaches as well as redefining traditional residential concepts. The development and application of the transformability concept is essentially connected to the fact that the traditional concept of residential architecture is not adapted to the circumstances of a contemporary resident and his needs, which, besides those that are predictable, can often include those unspecified and unknown. The applicability of design principles is changing and questioning the design patterns of contemporary residential buildings at the same time. This work emphasizes the importance of the application of transformation principles in the development of an architectural design methodology for contemporary residential buildings. It also raises new analytical questions which lead to an upgrading of knowledge in the field of design process. The concept refers to the physical transformation of an inner spatial plan and the transformation of the object membrane. It is about the spatially physical modifications which are accomplished by changes in the position, shape and structure of the characteristic elements of transformation. The research and analysis of the transformation principle, based on architectural design, emphasizes the importance of the identification of the basic characteristics which define the structure of the concept of transformable residential buildings and which are able to adapt to the constant changes caused by the needs of today's users and environment. The term "transformable residential buildings" refers to objects which can be transformed, changed and adapted, even after they were built. The aim of the application of the transformability concept is the improvement of the functionality of a building, and that is why this research is dedicated to the establishing and explaining of transformation principles which are applied in the architectural design of contemporary residential buildings in the conceptual phase of their project. The application of transformation principles, on the conceptual level of designing decisions, represents a part of notional designing strategy, where the assigned goals of a transformability of a residential structure are being accomplished. Actually, it is dedicated to the difficulties in designing buildings which can be transformed even after they were built. The analysis of the transformation concept of contemporary residential buildings is being done through the analysis of referential examples, according to the previously noticed transformation models and key influences on concept development. The examples are analyzed on the basis of applied transformation of an inner space plan and transformation of an object membrane, whereas the functional analysis of the structure of residential spaces is not emphasized. However, this research attempts to establish principles which, if applied, will help for diverse functions and forms to be accomplished. In other words, it is aimed at noticing the basic transformation elements which are used in the process of accomplishment of the concept of transformation. The visual and physical transformations are dependent on eachother and inseparable. However, the physical transformation of an object, which relates to a spatially mechanical movement of basic constructive elements, is dominant and the main topic of this work.

Keywords

Transformability; Transformation principles.

Vladimir Andjelkovic

The History of the Transformable House

Contemporary architectural practice actualizes the topic of transformability concept development in residential architecture and raises questions concerning the adaptability of contemporary residential structures in the continuous process of changing needs and different situations, as well as the set of development models of possible transformations, which represents the central topic of scientific research. The awareness of changeable spatio-physical, economic and technological conditions, capacities and the contemporary social needs of life processes has reflected on and largely built itself into the tendencies of contemporary architectural design.

If we look at the development and implementation of transformation principles in architectural design from the beginning of the 20th century till the present day, we notice that residential structures have a dominant position compared to other types of objects with a changeable spatio-physical structure (Lee, 2012).

In the past the very existence of humans was based solely on their ability to adapt to a new environment in a neverending process of habitat change. From the 18th century on, with the appearance and development of the idea of a skeletal construction system, the aim was to finish with a massive construction system and introduce steel spatial structures, the goal of which was to make the design and use of inner space simpler and more transparent. Till the end of the 19th century, most structures built in this way were designed without inner partitions in order to set them afterwards in a way that suited users best. Between the two World Wars, with the development of modernism, the architecture of residential buildings became a field where experimental and innovative concepts of design processes were applied. This was a time when a house became an experimental polygon and the implementation of new materials and technologies was promoted [Figure 1]. At the beginning of the 20th century, Le Corbusier (1986) defined "five points of architecture," one of which was known as "the free plan" (p.9). His Dom-ino house was designed according to these principles in 1914. It had clear horizontal flats supported by a skeletal holding system without any fixed inner partitions, in order to eventually define the space according to the specific needs of the user. It resulted in an absolute liberalization of the form and function of flexible architecture. In his postulate of these principles, Le Corbusier relied on architect Adolf Loos's Raumplan concept, which brought a new approach to the perception of flexible space in the design process of residential houses. In the period of the development of modern architecture, Theo Van Doesburg (1924) explained his theory in an article, Towards a Plastic Architecture, wherein he expressed his view that modern architecture was the one which was open (p.79).

World War II largely slowed down the development of experimental residential architecture and the design process was directed to fast and efficient construction rather than to innovation and a new approach to accomplishing a contemporary residential concept. During this period, the architecture of contemporary residential bulidings was, above all, based on the elaboration of a prototype architecture concept, and was in accordance with priorities directed to a fast and efficient restoration of cities and settlements. It significantly influenced the appearance of industrialized concepts and ideas, like Buckminster Fuller's prototype house, called Dymaxion [Figure 1-right], which emphasized construction adaptability and flexibility as innovative components. This was when the period of an advanced development of prefabricated construction started, whose basic priority was rationality, speed, flexibility, and the implementation of modular systems.

Encouraged by the rapid development of prefabricated architecture, the experimental design in the architecture of the 1960s became a predominant idea [Figure 2], through the work of young avant-garde groups like UFO, Archizoom and Superstudio in Italy; Coop Himmelblau and Missing Links in Austria; Ant Farm and Experiments in Art and Architecture in the USA; and all the way to visionary utopian architectural elevations like the Archigram in Great Britain. At the same time these groups

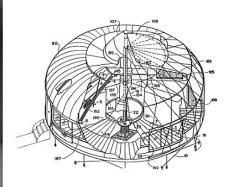
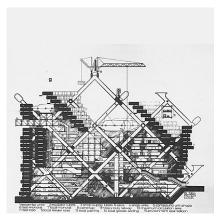
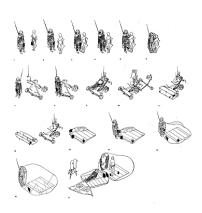




Figure 1. (from left to right) Gerrit Rietveld, Schroder house, Netherlands, (1924); Le Corbusier, House 14 and 15, Germany, (1927); Buckminster Fuller, Dymaxion House, USA, (1945).

Figure 2. (from left to right) Arhigram, Peter Cook, Plug in city, (1964); Kisho Kurokawa, Nakagin tower, Japan, (1972); Arhigram, Michael Webb - Suitaloon, Studio Vista, London, (1972).

Figure 3. (from left to right) Shigeru Ban, Naked house, Japan, (2000); Steven Holl, Fukuoka housing, Japan, (1991); Allan Wexler, Crate house, (1991).

Vladimir Andjelkovid

appeared, the manifesto of Japanese architects called "The Metabolism of 1960: The Projects of New Urbanism" started. It tried to answer the question of where contemporary residential architecture in Japan was heading at the very moment when the nation was losing its own identity. At the same time this concept was developing, another term appeared - "the capsule." It represented a very adaptable, fast and rational element of contemporary residential architecture.

In the 1970s, compact residential units were the focus of the designing ideas of Marco Zanuso, Alberto Rosselli, and others, who developed the concept of one-room residential units through their innovative projects, and those units served as places where more than one person could stay at the same time. These mostly utopian concepts continued to exist throughout the developing process of transformable residential structures. At the end of the 20th and the beginning of the 21st century, the implementation of the transformation principles in residential buildings became more and more noticeable as technology was developing and users' demands were becoming more complex, whereas experimental, liberal and innovative ideas became the predominant stream once again. The implementation of transformation principles in residential houses' architecture became more prominent and bolder, starting with Alan Wexler's experimental Crate house and the Fukuoka multi-family residential house in Japan by architect Steven Holl, both of which were built at the beginning of the 1990s, over the innovative technically technological solutions of the Massachusetts Institute of Technology (MIT), to a contemporary Japanese house, such as the Naked house by Shigeru Ban [Figure 3].

The end of the 20th century was greatly connected to the beginnings of technologically inspired concepts in transformable residential architecture. Non-contextual architecture with restricted spatial capacities was developing rapidly; i.e. the architecture which was adaptable to context changes in the phase of the exploitation of the object [Figure 4]. Contrary to the technologically inspired concepts, which were typical of the end of the 20th and the beginning of the 21st century, Japanese contemporary residential architecture could be seen, above all, in the implementation of transformation principles in accordance with traditional postulates, where variability of a spatial plan or the object structure was achieved by implementation of the simple principles of adjustment.

Over the last decade, the need for multi-purpose structures is growing consequently to the actualization of the sustainable development topic, where the accomplishment of the concept of transformable and changeable structures becomes an unrestrained process of rapid development (Asefi, 2010). Today, besides the basic implementation of transformation principles in architectural design of residential structures, a distinct dynamism and variety of influences direct this concept to finding solutions to design problems, which are related to distinct socially-demographic destabilization, caused primarily by war destruction (migration, finding solutions to the problem of a growing number of displaced persons, economic crisis, etc.) and by natural changes (natural disasters, which are partly caused by a negative influence of human technological development).

The Key Influences on the Development of the Transformability Concept

The implementation of transformation principles in the architectural design of contemporary residential houses represents an infallible part of architectural discourse, taking into account the fact that the concept which does not have transformation principles becomes insufficiently useful with changes in users' needs. The dynamics and change in general and specific needs, as well as the design for a familiar and unfamiliar user, demand a high level of flexibility in solutions, where the predominant problem is an unfamiliar user, who is statistically generalized, and who is faced with his residential space only when it has already been built and when a lot of energy and resources are needed to adapt it to his own needs (Lazovic, 1988). Thus, in general shortage, the residential space resolves primarily biological

Figure 4. (from left to right) Eduard Böhtlingk, The Markies, (1985); Richard Horden, Micro compact home, (2002); Joe Colombo, Total furnishing unit, (1972).

Figure 5. (from left to right) Andrea Zittel, A-Z wagon station, study, (2012); Michael Jantzen, M house, study, (2011); Michael Jantzen, Transformer house, study, (2002).

Figure 6.

(from left to right) Seifert and Stoeckmann, Living room house, Germany, (2005); Bevk-Perovic architects, House R, Slovenia, (2008); dRMM Architects, Sliding house, UK (2009).

needs, and its social and psychological aspects, while an upgrading of primary needs is disregarded (small and inadequate spaces, overcrowding, impossible additional work, inadequate layout of rooms, inadequate location, impossible transformation, etc.) The individuality of users' needs, which is expressed by the uniqueness and singularity of their demands, is a basis for the idea of the variety of needs in the construction of residential structures. The transformability concept in the architectural design of contemporary residential houses is essentially linked to the idea of change in contemporary architectural discourse, in the context of social, spatio-physical, technological, and economic conditions. These circumstances (spatial limitations, the change of spatio-physical surroundings, frequent change of users, etc.) have the crucial influence on the establishment of transformation principles in a practical architectural discourse. Architecture becomes more flexible and adaptable in order to fulfill a contemporary context. Architecture has evolved as technology and contemporary human needs develop, but the identification of context with a physical frame has become a problem in the process of architectural design. The acceptance of the concept determined only by the physical characteristics of a place has evolved into finding the answer to the question of aesthetics and form, while at the same time marginalizing or denying the need for more complex insight into the comprehensive idea of contextualization.

The development of construction and information technologies stimulates a multiple implementation of the transformability concept in architectural design, enabling the generating, checking and evaluating of the changeable structure concept and its accomplishment. It presumes the usage of systems enabling new models of architectural design to be created. Such models become part of the technological approach to contemporary architectural design, by means of implementation of transformation principles.

Key Influences

Social aspect

- Users' conceivable needs
- Users' indefinite needs
- Familiar user
- Unfamiliar user

Spatio-physical context

- Inner spatio-physical context

Spatio-physical limitations of inner layout; the reconfiguration of inner space layout in order to join it with the outer spatio-physical context; the reconfiguration of inner space layout according to newly developed guidelines from the immediate outer spatio-physical context

- Outer spatio-physical context

Influences of constant changes in the immediate physical surroundings; natural influences; non-contextual architecture

Technically technological aspect

- The influence of thenically technological aspect during the conceptual design phase software
- The influence of thenically technological aspect during the phase of transformability concept accomplishment hardware

Economic aspect

- Design of structures minimal dimension spaces with a high level of space qualities;
- rationalization of the construction process

Transformation Models

By observing the structures with changeable layout and form as multi-layered structures which have no distinct spatial limits as a group of "Shearing Layers of Change," (Brand, 1944) we notice two basic transformation models [Figure 7] in the architectural design of contemporary residential houses:

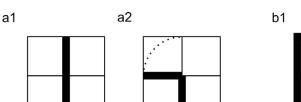
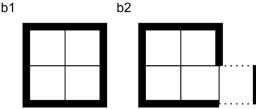



Figure 7.
Ideogram of transformation models.

A/ The transformation of the inner space layout

This represents a spatio-physical transformation of the inner structure of an object, wherein we differentiate two basic levels of changeability according to transformation elements where transformation elements represent the basic building elements of a structure (Partition elements, façade membrane elements and furniture) by which change in disposition or structure the transformation is achieved.

1/ The primary transformation of the inner space layout

The transformation which is achieved by implementations on the level of primary elements of residential space, meaning change in disposition, shape or structure, partition elements, and inner space structures (partition walls and inner openings, different spatial volumes, communication elements, etc.)

2/ The secondary transformation of the inner space layout

The transformation which is achieved by changes on the level of secondary elements of residential space, meaning change in disposition, shape or structure, movable and fixed furniture (multipurpose furniture which allows change and usage complement by its transformation.

B/ The transformation of the membrane

This represents a spatio-physical transformation of the outer structure of the building, where we differentiate two basic levels of changeability according to transformation elements:

1/The transformation of the outer membrane with a change in the dimensions of structures

The transformation which is achieved by changes on the level of the primary elements of a façade, meaning changes in disposition, façade panels and openings.

2/The transformation of the outer membrane without a change in the dimensions of structures

The transformation which is achieved by changes on the level of secondary elements of a façade, meaning changes in structure, façade panels and openings. This transformation represents the change in the membrane structure of the building (external influence protection, change in the exposure to the sun, change in the extent of an open space, visual connection between inner and outer space, the formalistic change of the structure aesthetic, etc.)

Determining Principles

- Step I:Analysis of referential examples [Table I.]
- Step 2: Comparative analysis of typical transformation [Table 2.]
- Step 3: Determining transformation principles [Table 3.]
- Step 4: Definition of transformation principles

Table I. Analysis of referential examples

Key influences: SP – Spatio-physical TE – Tehnological SO – Social EC - Economic

Transformation model type: IT – Transformation of inner space ST - Skin transformation

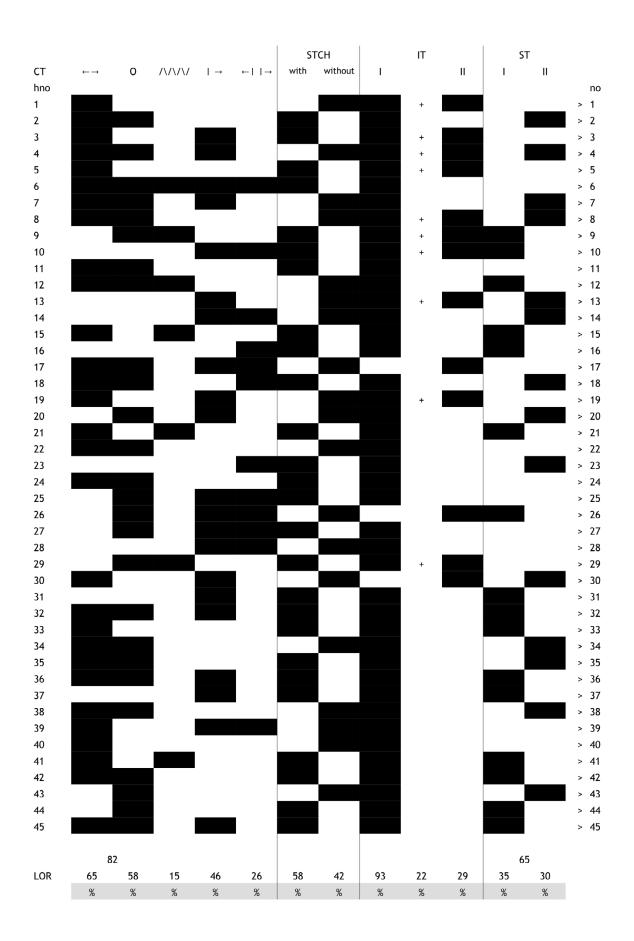
The degree of influence on the transformation concept:

2-Medium3 – High

PI - Principle I P2 – Principle 2 P3 – Principle 3 P4 – Principle 4

hno	Building description	P1	P2	P3	P4	SP	TE	so	EC	IT	ST
1	1923-24 Villa Le Lac (Une Petite Maison) Le Corbusier Corseaux, Switzerland.				-	1	/	3	1	1	/
2	1924 Rietveld-Schröder House <i>Gerrit Rietveld</i> Utrecht, Netherlands.				-	1	/	3	/	2	. 1
3	1927 House 14, 15 <i>Le Corbusier</i> Stuttgart, Germany.				-	/	/	2	2	2	/
4	1932 Maison de Verre (House of glass) Pierre Chareau & Bernard Bijvoet Paris, France.				-	2	1	3	/	2	1
5	1932 Kleinwohnung Carl Fieger Germany.				-	/	/	3	/	2	/
6	1942 Movable space dividers Fred J. Mac Kie, Jr. and Karl F. Kamrath USA.			W	_	1	/	3	/	3	/
7	1954 Planetveien12 (Korsmos villa) Ärne Korsmö + Christian Norberg-Schulz Oslo, Norway.				-	2	/	1	/	1	1
8	1973 Frey house Ernst Plischke Graz, Austria.				-	1	/	2	/	1	/
9	1985 the Markies Eduard Böhtlingk Netherlands.			W	-	3	1	/	2	1	3
10	1991 Crate house Alan Wexler Germany.				_	3	/	/	/	3	3
11	1991 Fukuoka Housing S <i>teven Holl</i> Fukuoka, Japan.				-	1	/	3	1	2	. 1
12	1993 "gucklhupf" mobile lookout <i>Hans Peter Worndl</i> Austria.				-	3	/	3	/	/	3
13	1994 Vinyl milford house <i>Allan Wexler</i> New York, USA.				-	1	/	1	3	2	/
14	1995 Bordeaux House Rem Koolhaas Bordeaux, France.				-	1	/	3	/	1	/
15	1995 Curtain Wall House <i>Shigeru Ban</i> Tokyo, Japan.			W	-	2	/	/	/	/	2

no	Building description	P1	P2	P3	P4	SP	TE	SO	EC	ΙΤ	ST
16	1996 Fahrt ins Grüne Kalhöfer - Korschildgen Lüttringhausen, Germany.				_	2	/	2	1	/	2
17	1996 House in a Suitcase Eva Prats and Ricardo Flores Barcelona, Spain.				-	3	/	1	/	2	/
18	1997 Nine-Square Grid House Shigeru Ban Kanagawa, Japan.				-	3	1	1	/	3	2
19	1998 Kubus Sturm and Wartzeck /				-	2	1	/	2	1	/
20	1999 T.O. Penthouse pool Architektur Vienna, Austria.				-	3	/	/	2	2	. 1
21	1999 Expander Kalhöfer - Korschildgen /			M	-	2	/	3	/	3	2
22	1999 Villa les roses Couvert & Terver Provence, France.				-	3	/	1	/	2	/
23	2000 Naked House <i>Shigeru Ban</i> Kawagoe, Japan.				_	2	/	2	/	3	. 1
24	2001 Suitcase house EDGE design institut Beijing, China.				-	2	/	3	/	3	1
25	2002 w.o.m.b. project Johnson Chou exibition, Design Show, Canada.				_	3	2	/	/	3	/
26	2002 I-box Iwaoka Tatsuo laboratory /				_	2	/	1	1	1	3
27	2003 Drawer house <i>Nendo</i> Tokyo, Japan.				_	3	/	2	/	3	1
28	2004 CircuitBox StudioX Tokyo Designer's Week, Japan.				_	3	1	2	/	3	/
29	2004 Black Treefrog Splitterwerk Bad Waltersdorf, Austria.			W	-	3	/	1	/	3	/
30	2004 Garden hut Eightyseven architects Sant Miguel de Crilles, Spain.					2	/	2	/	1	2



no	Building description	P1	P2	Р3	P4	SP	TE	SO	EC	ΙΤ	ST
31	2005 Living Room house, Seifert and Stoeckmann Gelnhausen, Germany.				-	2	1	2	/	1	2
32	2005 Safe house, <i>Robert Konieczny</i> Warsaw, Poland.				-	2	/	2	/	2	2
33	2008 House R bevk+perovic arhitekti Slovenia.				-	2	/	2	/	2	2
34	2008 House K bevk+perovic arhitekti Slovenia.				-	1	/	3	/	2	1
35	2009 1K House MIT, Ying Chee Chui /				-	2	/	3	3	3	1
36	2009 bloomframe Hofman Dujardin Amsterdam, Netherlands.				-	2	1	1	2	1	2
37	2009 Sliding house dRMM Architects Suffolk, UK.				-	2	2	2	/	/	2
38	2009 Linear house <i>Patkau Architects</i> British Columbia, Canada.				-	3	/	1	/	1	2
39	2010 24 Rooms, Domestic Transformer Gary Chang Hong Kong, China.				-	3	/	3	/	3	/
40	2010 Sunken house, <i>Kazuhiro Kojima</i> Odawara city, Japan.				-	3	/	2	2	2	1
41	2011 M House Michael Jantzen /				-	2	2	/	1	2	3
42	2011 Whangapoua (small hut) <i>Crosson Clarke Carnachan</i> New Zealand.				-	2	/	1	/	1	2
43	2012 A-Z wagon station Andrea Zittel /				-	3	1	1	2	1	2
44	2012 Caja Oscura Javier Corvalan Asumcion, Paraguay.	1			-	3	1	/	2	1	3
45	2013 Sharifi-ha house Nextoffice-Alireza Taghaboni Darrous, Iran.				-	2	1	2	/	2	2

Table 2.

Comparative analysis of typical transformation

CT - Characteristic transformation STCH - Structural change IT - Transformation of inner space ST - Skin transformation I - Primary transformation II - Secondary transformation hno - House number LOR - Level of representation

Table 3. Determining transformation principles

2.2, 1.3 2

Transformation principles in the architectural design of a contemporary house

		design of a contemporary nouse	ı			
		Description of the applied principles of transformation				
>	1	Opening and closing of inner partitions	1.1		1	۱
>	2	Opening and closing of inner partitions	1.1		1	
>	3	Opening and closing of inner partitions, pulling in and drawing out of furniture	1.1, 2.1	1	2	
>	4	Opening and closing of inner partitions and furniture, pulling in and drawing out of f.	1.2, 2.1	1	2	
>	5	Opening and closing of inner partitions, furniture dismantling	1.2		1	
>	6	Opening and closing of inner partitions, furniture dismantling	1.2		1	
>	7	Opening and closing of inner partitions, furniture dismantling	1.2		1	
>	8	Opening and closing of inner partitions	1.1		1	
>	9	Expanding and contracting of membrane, furniture dismantling	3.1, 1.3	3	1	
>	10	Expanding and contracting of furniture, joining and division of furniture	2.1, 4.1	2	4	
>	11	Opening and closing of inner partitions	1.1		1	
>	12	Opening and closing of membrane	1.3		1	
>	13	Pulling in and drawing out of furniture	2.1	:	2	
>	14	Joining and division of furniture	4.2		4	
>	15	Expanding and contracting of membrane, Opening and closing of membrane	3.1, 1.3	3	1	
>	16	Joining and division of building structure	4.3	•	4	
>	17	Opening and closing - pulling in and drawing out of furniture	1.2, 2.1	1	2	
>	18	Opening and closing of inner partitions, pulling in and drawing out of furniture	1.1, 2.1	1	2	
>	19	Pulling in and drawing out of furniture	2.1		2	
>	20	Pulling in and drawing out of furniture	2.1	_	2	
>	21	Expanding and contracting of inner partitions and outer membrane	3.2		3	
>	22	Opening and closing of inner partitions and furniture	1.2		1	l
	23	Joining and division of inner volumens	4.4		4	
	24	Opening and closing of inner partitions, furniture dismantling	1.2		1	
>	25	Opening and closing - pulling in and drawing out of furniture	1.2, 2.1	1	2	
>	26	Opening and closing of membrane	1.3		1	
	27	Expanding and contracting of inner partitions, drawing out and dismantling of furniture	3.2, 2.1	3	2	
>	28	Pulling in and drawing out, joining and division of furniture	2.1, 4.4	2	4	
>	29	Expanding and contracting, opening and closing of inner partitions	3.2, 1.1	3	1	
	30	Opening and closing of membrane	1.3		1	
	31	Pulling in and drawing out of membrane	2.2 1.3, 2.2		2	
>	32	Opening and closing of membrane, pulling in and drawing out of membrane	1.3, 2.2	1	2	
>	33	Opening and closing of inner partitions	1.1		1 1	
>	34 35	Opening and closing of inner partitions Opening and closing of inner partitions	1.1		1	
>	36	Opening and closing, or liner partitions Opening and closing, pulling in and drawing out of membrane	1.3, 2.2	1	2	
>	37	Pulling in and drawing out of membrane	2.2		2	
>	38	Opening and closing of membrane	1.3		1	
>	39	Pulling in and drawing out, joining and division of furniture	2.1, 4.1	2	4	
>	40	Opening and closing of inner partitions	1.1		1	
>	41	Expanding and contracting, dismantling of membrane	3.1, 1.3	3	1	
>	42	Opening and closing of membrane panels	1.3		_ <u>'</u> 1	
	43	Opening and closing of membrane panels	1.3		1	
	44	Opening and closing of membrane Opening and closing of membrane	1.4		1	
	77	opening and crosning of membrane	'			

> 45 Pulling in and drawing out of membrane, opening and closing of membrane

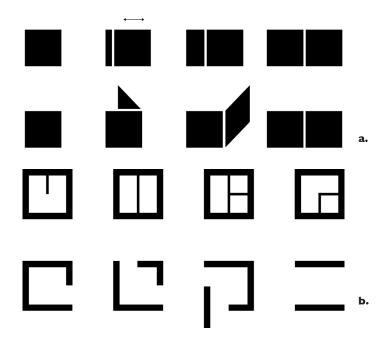
Vladimir Andjelkovic

Transformation Principles

The implementation of transformation principles in the architectural design of contemporary residential houses enables the establishment of new design strategies, and in that way initiates their further development. These principles, as principle application, are not much different from the general transformation principles which are applied in design, and are set by Per Mollerup (2001) through twelve collapsibility principles (p.30). However, the field and results of their implementation are rather differentiated. These principles treat different art forms, but they all have the same conclusion, which is that the transformation principles represent the basis of the transformable architecture (Soozhee, 2008).

According to previously performed analysis about the presence of characteristic transformations according to set parameters of referential examples of transformable residential architecture, four main transformation principles are established:

- I. The principle of opening and closing;,
- 2. The principle of expanding and contracting;
- 3. The principle of joining and division; and
- 4. The principle of pulling in and drawing out.


The observed transformation principles are all about the change in disposition, shape and structure of the transformation elements, which results in spatially physical structure transformations, while at the same time their implementation is mutually dependent and closely connected, and in many cases equivalent.

The transformation principles represent the physical and perceptive transformation of the inner space layout and membrane transformation, which is achieved by opening and closing, expanding and contracting, joining and division, and pulling in and drawing out of transformation elements whose change of disposition, shape or structure achieves the transformation. It is achieved by the basic and complex (spatial) geometric element of transformation by means of rotation, translation, and rotation with translation. The implementation of this principle is usually achieved by:

- a/ Partition and other elements,
- b/ The elements of the façade membrane which are the part of the structure membrane, and
- c/ The elements of the inner fittings.

I/ The principle of opening and closing

Figure 8. Ideogram of possible transformations, according to the opening and closing principle, where we can see: a.) The transformation of elements; and b.) Transformation of the inner space layout and membrane transformation.

Figure 9.The basic elements of the opening and closing transformation principle, where we can see: a.) An element of inner fittings; b.) A partition element; and c) A façade element.

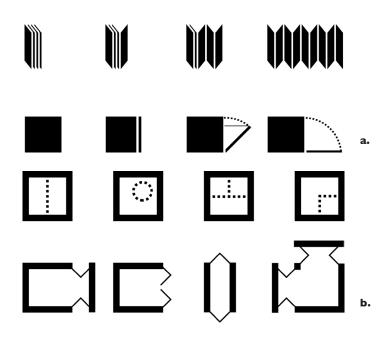


Figure 10. Examples of applying the Principle of opening and closing.

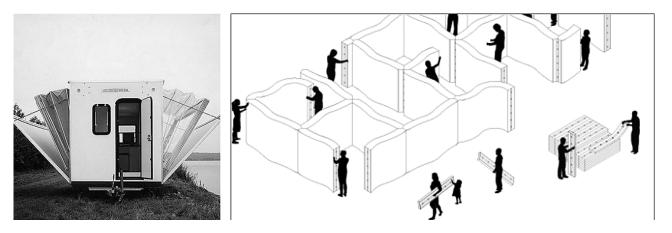

2/ The principle of expanding and contracting

Figure 11.Ideogram of possible transformations, according to the expanding and contracting principle, where we can see: a.) Transformation of elements; and b.) Transformation of the inner space layout and membrane transformation.

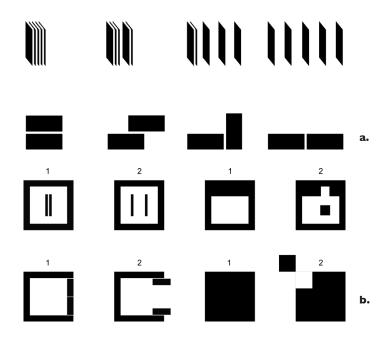

Figure 12.The basic elements of the expanding and contracting transformation principle where we can see: a.) An element of inner fittings; b.) A partition element; and c.) A façade element.

Figure 13. Examples of applying the Principle of expanding and contracting.

3/ The principle of joining and division

Figure 14. Ideogram of possible transformations, according to the joining and division principle, where we can see: a.) The transformation of elements; and b.) Transformation of the inner space layout and membrane transformation.

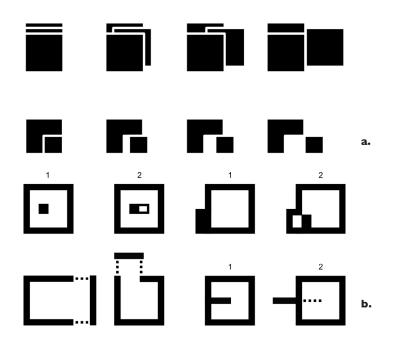

Figure 15.
The basic elements of the joining and division transformation principle, where we can see: a.) An element of inner fittings; b.) A partition element; and c.) A façade element.

Figure 16. Examples of applying the Principle of joining and division.

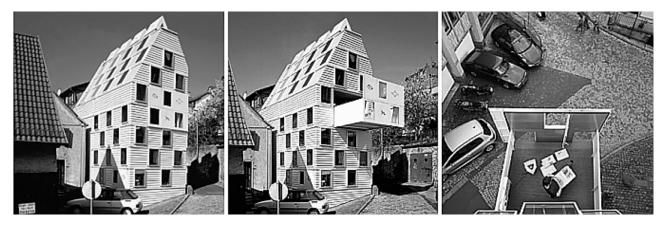

4/ The principle of puling in and drawing out

Figure 17. Ideogram of possible transformations, according to the pulling in and drawing out principle, where we can see: a.) The transformation of elements; and b.) Transformation of the inner space layout and membrane transformation.

Figure 18.The basic elements of the pulling in and drawing out transformation principle, where we can see: a.) An element of inner fittings, b.) A partition element; and c.) A façade element.

Figure 19. ples of applying the Principle of pulling in and drawing out.

References

Asefi, M. (2010). Transformable and Kinetic Architectural Structures: Design, Evaluation and Application to Intelligent Architecture. Germany: VDM Verlag Dr. Müller.

Bell, J., & Godwin, S. (2000). The Transformable House. New York: Jonh Wiley & Sons.

Brand, S. (1994). How Buildings Learn: What Happens After They're Built. London: Penguin Books.

De Marco Werner, C. (2013). Transformable and transportable architecture: analysis of buildings components and strategies for project design. Master Thesis, Barcelona: Universidad Politécnica de Cataluña.

van Doesburg, T. (1924). Towards a plastic architecture. Translation of original published in De Stijl, XII, 6/7. Architecture & CAAD. Retrieved 2006-07-31.

Kronenburg, R. (2007). Flexible: Architecture that Responds to Change. London: Laurence King Publishers.

Kronenburg, R. (2008). Portable Architecture. Berlin: Birkhäuser Architecture.

Lazović, Z. (1988). Prototip i njegov značaj u arhitektonskom projektovanju. *IMS* `88-tehnologija projektovanja i građenja, Beograd: IMS SR Srbije, str. 129-158.

Lee, J. D. (2012). Adaptable, Kinetic, Responsive, and Transformable Architecture: An Alternative Approach to Sustainable Design. PhD Thesis, Austin: The University of Texas.

Le Corbusier (1986). Towards a New Architecture. Mineola, NY: Dover Publications, Inc.

Mollerup, P. (2001). *Collapsible:The Genius of Space-Saving Design*. San Francisco, CA: Chronicle Books.

Mostaedi, A. (2006). Great spaces: Flexible homes. Barcelona: Carles Broto.

Oungrinis, K. (2009). Structural morphology and kinetic structures for transformable spaces. PhD Thesis, Thessaloniki: Aristotle University of Thessaloniki, 2009.

Singh, V. et al. (2009) Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles. *Journal of Mechanical Design* Vol. 131, NY: American Society of Mechanical Engineers (ASME).

Soozhee, L. (2008). Transformative design: understanding the principle, processes and products to create transformative design outcomes. Hoxton Park: N.S.W..